Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain.

نویسندگان

  • S Sponberg
  • R J Full
چکیده

A musculo-skeletal structure can stabilize rapid locomotion using neural and/or mechanical feedback. Neural feedback results in an altered feedforward activation pattern, whereas mechanical feedback using visco-elastic structures does not require a change in the neural motor code. We selected musculo-skeletal structures in the cockroach (Blaberus discoidalis) because their single motor neuron innervation allows the simplest possible characterization of activation. We ran cockroaches over a track with randomized blocks of heights up to three times the animal's ;hip' (1.5 cm), while recording muscle action potentials (MAPs) from a set of putative control musculo-skeletal structures (femoral extensors 178 and 179). Animals experienced significant perturbations in body pitch, roll and yaw, but reduced speed by less than 20%. Surprisingly, we discovered no significant difference in the distribution of the number of MAPs, the interspike interval, burst phase or interburst period between flat and rough terrain trials. During a few very large perturbations or when a single leg failed to make contact throughout stance, neural feedback was detectable as a phase shift of the central rhythm and alteration of MAP number. System level responses of appendages were consistent with a dominant role of mechanical feedback. Duty factors and gait phases did not change for cockroaches running on flat versus rough terrain. Cockroaches did not use a follow-the-leader gait requiring compensatory corrections on a step-by-step basis. Arthropods appear to simplify control on rough terrain by rapid running that uses kinetic energy to bridge gaps between footholds and distributed mechanical feedback to stabilize the body.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control.

We currently know little about how animals achieve dynamic stability when running over uneven and unpredictable terrain, often characteristic of their natural environment. Here we investigate how limb and joint mechanics of an avian biped, the helmeted guinea fowl Numida meleagris, respond to an unexpected drop in terrain during running. In particular, we address how joint mechanics are coordin...

متن کامل

Design, Simulation, and Stability of a Hexapedal Running Robot

Animals are the current gold standard of locomotion ability. Their ability to navigate rough terrain is unmatched by their man-made counterparts. Recent studies by biologists have begun to demonstrate some of the principles behind their remarkable capabilities. In particular, studies of cockroaches have shown that they use a feed-forward motor actuation pattern that is virtually unchanged, even...

متن کامل

Mechanical self-stabilization, a working hypothesis for the study of the evolution of body proportions in terrestrial mammals

Locomotion is a behaviour resulting from the interaction of the nervous and muculo-skeletal systems and the environment. However the musculo skeletal systems of some terrestrial mammals present an intrinsic ability to realize a dynamic stable locomotion. Actual anthropomorphic passive walkers demonstrate that a pure mechanical system with leg and arms is able to walk down an inclined plane. Num...

متن کامل

An Adaptive Neuromechanical Model for Muscle Impedance Modulations of Legged Robots

Recently, an integrative view of neural circuits and mechanical components has been developed by neuroscientists and biomechanicians [11, 8]. This view argues that mechanical components cannot be isolated from neural circuits in the context of substantially perturbed locomotion. Note that mechanical passive walkers with no neural circuits only show stable locomotion on flat terrain or small slo...

متن کامل

Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain.

Terrestrial arthropods negotiate demanding terrain more effectively than any search-and-rescue robot. Slow, precise stepping using distributed neural feedback is one strategy for dealing with challenging terrain. Alternatively, arthropods could simplify control on demanding surfaces by rapid running that uses kinetic energy to bridge gaps between footholds. We demonstrate that this is achieved ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 211 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2008